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CASES OF EULER'S EQUATIOflS* 

0.1. BOGOYAVLENSKII 

It is proved that the equations of rotation of a solid fixed at its centre 
of mass in a Newtonian field of an arbitrary fairly distant object are 
completely Liouville integrable. The integrable case of rotation of a 
magnetized solid in a uniform gravitational and magnetic field, which 
generalizes the Kovalevskaya case, is indicated. 

1. The Liouville integrability of the rotation of an arbitrary solid fixed 
at its centre of mass in a Newtonian field of an arbitrarily distant object. 
The investigation of the rotation of an arbitrary solid T fixed at the centre 0 of its mass 
in a Newtonian field of an arbitrary fairly distant object V reduces to the investigation of 
the rotation of the solid T in a Newtonian field with an arbitrary uniform quadratic potential 

/l, 2/. Until recently only a single case of this problem was known. In it the gravitational 
field of the object V was axially symmetric (the axes passes through the point 0) and the 
quadratic potential cp is equivalent to the potential cp = U(Z) I2 Brun's problem /3/, see also 

/l, 2, 4/J. The equations which describe the rotation of a solid T reduce to the integrable 
Klebsch problem for Kirchhoff's equations. It is shown below that this problem is, in the 
most general case, completely Liouville integrable. 

The equations of rotation of a solid T about a fixed point 0 are considered in a reference 
system S rigidly attached to the solid. Let cp(s1,s2,i) be the Newtonian potential in the 
stationary reference system F whose centre is at the point 0, and a, p, y be the three unit 
vectors of the stationary system of coordinates in the reference system S. Let us determine 
the potential function 

U (a,fl, v) =I p(r) (o ((1, a), (I, B), (r, y))dr'dr2dr3 (1.1) 
T 

where p(r) is the density of the solid T at the point r. The equations of rotation of the 
solid T in the Newtonian field with potential cp (~l,rz,.z?) in the reference system S have the 
form 

M'=M x o + (aU/acr) x a + (au!@) x p f (au/$') :: y, (1.2) 

a'=a r: 0, B'=Bxo, 1'=yxo 

where M, o are the vectors of kinetic momentum and angular velocity, whose coordinates are 
connected by the relations 

Mi= 5 lih.Oli, I~, = S p(r) (6,, i (r')z- rirk) drl drzdr3 (1.3) 
k=l T l-1 

where I,, are the components of the inertia tensor of the solid T in system S. 

Theorem 1. The equations of rotation of an arbitrary solid around a fixed point 0 in a 
Newtonian field with an arbitrary quadratic potential 

are completely Liouville integrable. 
Note that Newtonian fields with a potential of the form (1.4) that satisfy the Laplace 

equation Aq (51, 22, 13) = 0, are subject to the condition 011 + alp + a33 = 0. 

We select the unit vectors of the fixed reference system F that coincide withtheprincipal 
axes of the quadratic form and, after such a transformation, obtain 
%&v. 

2q7 (2) = a,(s')2$. a,(*)2 + 
The unit vectors of the reference system S are selected so that they coincide with 

the principal axes of the inertia tensor, i.e. lip = 1161E. The potential function U (1.1) then 
takes the form 

2u= uo- al(Z,Q + I& + Z,aZ) - at (Z,B? + 1,&z + (1.5) 

Z&V) - a, (Z&2 + Z&2 + Z,0J2), u 0 = (4, + a2 + a,)(Zl + I, + I,) I2 
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Taking advantage of the isomorphism of the vectors with components V' in Ra and the 
skew symmetry (3 x 3) of matrices with elements Vjr, we have 

l+ + vj, = - 5 V+eijk 
4-l 

(1.6) 

for which the vector product x X y becomesthecommutator of the matrices [X, Y] = XY-YyX. 
After this isomorphism the matrices a,b,y, M,w correspond to the vectors a, p, 9, M, e, 
and Eqs.(l.Z) take the form 

M' = IM, 01 + a,la, Ca + aC1 + 4, CP + fX1 + (1.7) 

08 Iv, CY + VCI 

a’ = la, 01, b’ = Ifi, 01, y’ = Iv, 01 

where the matrix C has elements Gil = (2-l (I, + I, + I,) - Zi) 6ij and Ml1 = Zpij (i, j, k = 1, 2, 3). 
By virtue of (1.7) we have 

(a2)’ = Ia2, wl, (fF)’ = Ifi2, 01, (vz)’ = Lp*, 01 

We introduce the matrix u = ala2 $ aPb2 -i- a~? and use the obvious identity Ix, cx + SC1 = 
ltz, Cl; from (1.7) we have the corollary 

M' = IM, 01 -i- Iu, Cl, u. = iu, 01 (1.8) 

The matrices !f and o are skew symmetric, while the matrices u and C are symmetric. 
Another derivation of (1.8) in a more general case is indicated in Sect.2. 

Equations (1.8) are Euler equations in the adjoint space of the Lie algebra Ls', whose 
elements 1 have the form 1 = M + u, where M, u are three-dimensional matrices, and the 
commutators M' = -M, u’ = u are defined by the conditions 

IM, ul = Mu - UM, IM,, M,l = M,M, - n/l&,, [u,, U,] = 0 (1.9) 

The action orbits X of the respective Lie group Go' and LO’* are simplectic manifolds, 
and VB = R3 X SO(3) = T (SO(3)) is a bunch tangent ot the Lie group SO(S). The manifolds VB 
are defined by the conditions hj(u) = const, where xi (u) are the eigennumbers of the matrix 
u, if A1 = I.,# h,, then orbit j = Vh = R3 X S2, and- X = R3, if A1 = 
brackets of the functions on Lp'* are determined by the formulae 

{Y, g) = c CljhSh. 6 _g 

i, j, k I 

where Cijh- are structural constants of the Lie algebra Lg’ in basis 
(1.10) on the submanifolds of 1/‘8 are non-degenerate. 

h, = a,. The Poisson 

(1.101 

li. The Poissonbrackets 

Equations (1.8) are 

where the Hamiltonian is 
We will introduce a 

mentary first integrals 

of Hamiltonian form 

111,j' = {lwzj. HI, U,)’ = {Uij, H) 

H = J, = Tr(Z-'M.o _t u.C). 

(1.11) 

matrix a with elements Bij = 1112131i-%i~. System (1.8) has two supple- 

J, = Tr (2-lM* + Bu), J, = Tr (Wu + Bu2) (1.12) 

The integrals J1, J,, JB, are obviously functionally independent. By virtue of (1.11) we 
have J,'= {J*, J1} = 0, Js' = {J9, J1) = 0. Direct calculation shows that the Poisson bracket 

{J2,Js) = 0, i.e. the three integrals J,, J2, J, are in involution. Bence the Hamiltonian 
system (1.8)-(1.11) is completely Liouville integrable on the six-dimensional simplectic 
submanifolds of VS. The trajectories of system (1.8)-(1.11) are quasiperiodic windings of 

three-dimensional tori T3 in the space L;* defined by the conditions Ji = cir hi(U) = k,. 
Equations (1.8) have an equivalent representation in the form of the Lax matrix equation, 

which depends on an arbitrary spectral parameter E 

L’=IL,Ql, L=BEZ+ME+u, Q-w--EZ (1.13) 

Integrals (1.12) are the coefficients at ,lF in the expansion of the functions Tr (L%(E)) 
and Tr(Ls(E)) (which by virtue of (1.13) are independent of t) in powers of the parameter E. 
Owing to the existence of representation (1.13) the Euler equations are explicitly integrable 
with respect to theta-functions of Riemannian surfaces specified by the equations R (E, w) = 

det (L (E) - w a 1) = 0. The Lax equations with a spectral parameter were studied (in connection 
with other problems) in /5, 6/. 

Note that in the integrable Klebsch case /l, 2, 4/ which describes the solution of Brun's 

problem /3/ (cp = a (tl)*), the dynamics of trajectories is quasiperiodic on two-dimensional tori 
T’. In little known publications by Brun /7, 0/ two supplementary integrals of the equations 
of a solid rotating in a filed with a general quadratic potential of the form (1.4) are 
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indicated. Goryachev /9/ found two supplementary integrals in the case of potential cp (I) = 
4 ((r')Z - (rP)Z). In these works the Hamiltonian structure of Euler's equations (1.2), and the 
question of their Liouville integrability was not considered. In the problem investigated 
here the combined level of all six first integrals I, = ci, ii(u)= kj is a three-dimensional 
manifold, as in the most general case of Euler-Poisson equations. Thus, unlike the integrable 
Euler-Poisson equations, the method of the last Jacobi multiplier is not applicable. 

The first proof of Theorem 1, different from the one given here, appeared in /lo/. In 
the present paper in addition to the Liouville proof of integrability based on investigation 
of the Hamiltonian structure of (l-H), a proof is obtained of the integrability of these 
equations in terms of Riemann theta-functions, which is a corollary of the representation of 
system (1.8) in the forms (1.13). The explicit formulae expressing the angular velocities 
of the solid e"(t) in terms of Riemann theta-functions were derived in /ll/. 

The general equations (1.2) which describe the rotation of a solid around a fixed point 
in a Newtonian field are Euler equations in the conjugate space L1** to the Lie algebra Lr,, 
whose commutators in the basis Xi, Y," (i, I, k, a, f3 = 1, 2, 3) have the form 

[Xi, X)1 = EijkXp$ [Xi, Yj”] =E,jkYba, IYia, Yja] = 0 (1.14) 

Equations (1.2) have an energy integral J, =2_l(M,o)- U (a,b,y) and six geometric 
integrals J,, . . .,J,, which determine the paired constant scalar products of the vectors 
a,fl, y. The combined level of the integrals J,, . ..,J, is a submanifold of Vi@ =T (SO (3)). 
Equations (1.2) on Y1' are of Hamiltonian form with the Hamiltonian J, which is of simplectic 
structure determined by (l.lO)-(1.14). Equations (1.2) are the first example of the physically 
important Euler equations of the Lie algebras, where the non-linearity of the potential 
function U in the Hamiltonian J1 may be as complicated as desired. 

2. Integrable cases of a solid rotating round a fixed point in a force 
field with a quadratic potential. Consider the rotation of a solid T round a fixed 

point in a force field with the potential 

where ea,B (Ix I) are arbitrary differential functions of the variable (I I. The Newtonian 
potentials of the form (2.1) that satisfy the Laplace equation Am = 0, are determined by 
the formulae 

Cl1 + c32 + css = 0, b,, + b,, + bs3 = 0 

We introduce the following four-component tensor symmetric about two pairs of indices 

or B and i, k which generalizes the inertia tensor It, (1.3) 

T -1 p(r)a,B()rl)(&k i (r’)2-r+k)dr1drgdP crfiik - 
T l-1 

Theorem 2. If the tensor T .q,k can be represented in the form 

(2.2) 

(2.3) 

where A,B,C are arbitrary symmetric matrices, the equations of rotation of the solid T 
around a fixed point 0 (ri = 0) in a field with potential (2.1) is completely Liouville 
integrable. 

If %a (I 2 I) = const, then conditions (2.3) are obviously satisfied, and hence Theorem 2 
generalizes Theorem 1. If the solid T is a sphere whose density is 

p (r) = p1 (r / I r Ih (I I- I) (2.4) 

then conditions (2.3) are satisfied for arbitrary functions %l (Ix I) (then B,B = Cik = 0 1, 
hence the equations of rotation of such a solid in a field with an arbitrary potential of 
form (2.1) are completely Liouville integrable. 

rk 
Let the orthogonal matrix Q(t) define the transformation from the Lagrangian coordinates 
attached to the frame of reference S in Euler coordinates 

indices indicate summation everywhere). 
ri: ri = Qri (t)rk (recurrent 

angular velocity matrix. 
By definition we have Q'= Qo, where 0 is the 

In the system S the potential (2.1) has the form 
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The components of the moment of forces acting on the solid T in a field with potential 

9' (2.2) are given by 

(2.5) 

The skew symmetric matrix K which by the isomorphism (1.6) corresponds to the vector of 
the moment of forces (2.5) has the elements 

(2.6) 

Substituting (2.3) into formulae (2.6), we obtain 

Kj1. = I~r&eQt~i&~ - Iw%Qr~Q,f (2.7) 

We introduce the matrix u = Q'AQ. In matrix form (2.7) means that K = In- ul--_lu, I]. 
Hence the equations that define the angular momentum matrix and (by virtue of Q’ - Qo) of 
matrix u have the form 

M' = IN, ol - 1% II. IL' = lu, 01 (2.8) 

Equations (2.8) completley define the rotation of a solid in a field with pctential (2.1). 
if conditions (2.3) are satisfied. They obviously are the same as (1.8), and are therefore 
completely Liouville integrable. 

3. The integrable case of the rotation of a magnetized solid in a uniform 
gravitational and magnetic field. Consider the rotation of the solid T round a fixed 
point 0, whose magnetic moment mis constant in a uniform gravitational and magnetic field. 
Let us assume that the inertia tensor of the solid in the rotating frame of reference S 1s 
diagonal with components I,,I,.I,. The directions of the uniform gravitational and magnetic 
field stress vectors are defined by the vectors v and g of unit length: the vector r defines 
the position of the centrc of mass (rn system S). m 1s the mass of the solid, and q and h 
are the intensities of the gravitational and magnetic fields; M and 0 are the angular 
momentum and angular velocity vector M, = I@#. The equations of motion in system s have 
the form 

~li'=M;~o~mgrr~+/~ms6, y'=y x 0. 6'=6>(Ul (3.1) 

The equations of rotation about a fixed pcint of a fully charged solid with total charge 

0 in a constant gravitational and electric field arc of the same form, except that instead 
of h we have E (the electric field strength), and instead of m we have the dipole moment 
vector 

d- \ a(r)r drldrr dr3 
i 

where o(r) is the electric charge density. 
Equations (3.1) !)ave the following first integrals: 

J1=~l(M,o)--mg(r,y)--hm,6), Jz=(%Y) 

J 8 - (t&6), Jr = (y, 6) 

(3.2) 

The integral Jl is identical with the total energy of the solid. The manifold v",defined 

by conditions J, - c,, JJ -=. c5, J, = c,, is generally homeomorphic to the product i'0 F R3 x 

SO(3) = T (SO (3)). 
Equations (3.2) are the Euler equations in the conjugate space LI* of the Lie algebra 

Lb whose commutators in the basis Xi, y,a have the form (l-14), where CL, fi =-i,z. The three- 

dimensional vectors M,y,6 belong to the subspaces Xi** E'i'*, Yt** respectively. 

The Poisson brackets of the functions in space L$ are defined by the formulae (1.10). 
For the basis functions Mi, ~1, 68 we obtain 

{Wi, Mj) = ell,M,, {nf,. V,) = 'iJ~Yl., {",. 'J} = 'i~t', 
(j.3) 

{yi* I!/} = (6,. 61) = {v,* 6,) = 0 

sy virtue of (1.10) the Poisson brackets of arbitrary pclynomials of Mi,Yf, bt are 

calculated by the Leibniz rule using (3.3). The functions J,.J,.J, cancel the Poissonbrackcts 
in (3.3); the manifolds of their levels Ve have a non-degenerate simplectic structure (these 
structures are similar to those in /12/ for the Kirchhoff equations). Equations (3.1) have 

the Hamiltonian form 

fif,' 7 {.$I,, H), y,' = (VJ, H), 6; = @,, 11) 
(3.4) 

where the Hamiltonian H = J,. 

Theorem 3. Equaties (3.1) with the conditions 
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mgr = (R, 0, 0), hm = (0, Q, O), I, = I, = 2Zt (3.5) 

have the first integral 

J6 = 212 + z*z (3.6) 

z1 = Ml2 - Mz2 + 4Z,Ry, - u,Qb, z1 = 2M,M, -k 4Z,Ry, + 4ZsQb 

On the manifold Jb = 0 (q = 0, z1 = 0) equations (3.1) have the supplementary integral JB E 

{zlr znl I and are completely Liouville integrable. 
A direct check shows that (3.1) yields the equations 

z 1' = {z,, H) = Z3-‘M,z,, a,’ = (z,, Zf} = --I,-‘Mtz, (3.7) 

that prove the existence of integral J1. Equations (3.7) are equivalent to the single equation 
z' = -iI,-'Mzz, where z = z1 + iz,, and 1s = I z 12. 

The manifold of level Jo= 0(zl=0,z2= 0) in intersection with the submanifolds of VB 
determines the simplectic four-dimensional submanifolds V4 (the induced simplectic structure 
is non-degenerate). System (3.1)-(3.4) has on submanifolds V* the supplementary first integral 

Js = {z,, 4 - ~MI (Ml2 + Mg2 + U.&~,Y, + U,QM,G,) (3.8) 

In fact, by virtue of the Jacobi identity and (3.7), we have 

Js’ = {{z,, z,), H) = - ii% HI, %} + {h, H), ZI) = 
Is-‘z,{Ms, z,} + I,-‘z,Pf,, zd = Z,-‘(2z,M,M, -- zz (M,2-M,2)) 

Consequently on submanifolds V’(z, = zp = 0, J, = cp, J, = c~,J~=c,) we have Ja’=O. Thus 
the Hamiltonian system (3.1)-(3.4) has on invariant submanifolds Vd a supplementary manifold 

J8 and is completely Liouville integrable. When there is no magnetic field (Q = O), the 
integrable case of (3.1) becomes the classic Kovalevskaya case. 

In the integrable case obtained the potential function U=Ry, + Qfi2 (see (1.2)) essen- 
tially depends on three Euler angles cF* 9, 8. Integrable cases in which the function U depends 
onlyontwoEulerangles T, 8, were investigated in /13, 14,'. 
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